Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging (Albany NY) ; 15(23): 14086-14108, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38095646

RESUMEN

Trisomy 21, or Down syndrome (DS), is the most frequent human autosomal chromosome aneuploidy, which leads to multiple developmental disorders, especially mental retardation in individuals. The presence of an additional human chromosome 21 (HSA21) could account for the pathological manifestations in DS. In this study, we analyzed the mRNA gene expression profile of DS-derived amniocytes compared with normal amniocytes, aiming to evaluate the relationship between candidate dysregulated HSA21 genes and DS developmental phenotypes. Differentially expressed genes (DEGs) included 1794 upregulated genes and 1411 downregulated genes, which are mainly involved in cell adhesion, inflammation, cell proliferation and thus may play an important role in inducing multiple dysplasia during DS fetal development. Furthermore, STRING protein network studies demonstrated 7 candidate HSA21 genes participated Gene Ontology (GO) terms: cell adhesion and extracellular matrix remodeling (COL6A1, COL6A2, COL18A1, ADAMTS5, JAM2, and POFUT2), inflammation and virus infection response (MX1 and MX2), histone modification and chromatin remodeling (NRIP1), glycerolipid and glycerophospholipid metabolism (AGPAT3), mitochondrial function (ATP5PF and ATP5PO), synaptic vesicle endocytosis (ITSN1 and SYNJ1) and amyloid metabolism (APP). Meanwhile, GSEA enrichment identified several transcription factors and miRNAs, which may target gene expression in the DS group. Our study established connections between dysregulated genes, especially HSA21 genes, and DS-associated phenotypes. The alteration of multiple pathways and biological processes may contribute to DS developmental disorders, providing potential pathogenesis and therapeutic targets for DS.


Asunto(s)
Síndrome de Down , MicroARNs , Humanos , Síndrome de Down/metabolismo , Transcriptoma , MicroARNs/metabolismo , Factores de Transcripción/genética , Inflamación
2.
Biol Res ; 56(1): 67, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38066591

RESUMEN

BACKGROUND: Growing evidence has suggested that Type I Interferon (I-IFN) plays a potential role in the pathogenesis of Down Syndrome (DS). This work investigates the underlying function of MX1, an effector gene of I-IFN, in DS-associated transcriptional regulation and phenotypic modulation. METHODS: We performed assay for transposase-accessible chromatin with high-throughout sequencing (ATAC-seq) to explore the difference of chromatin accessibility between DS derived amniocytes (DSACs) and controls. We then combined the annotated differentially expressed genes (DEGs) and enriched transcriptional factors (TFs) targeting the promoter region from ATAC-seq results with the DEGs in RNA-seq, to identify key genes and pathways involved in alterations of biological processes and pathways in DS. RESULTS: Binding motif analysis showed a significant increase in chromatin accessibility of genes related to neural cell function, among others, in DSACs, which is primarily regulated by members of the activator protein-1 (AP-1) transcriptional factor family. Further studies indicated that MX Dynamin Like GTPase 1 (MX1), defined as one of the key effector genes of I-IFN, is a critical upstream regulator. Its overexpression induced expression of AP-1 TFs and mediated inflammatory response, thus leading to decreased cellular viability of DS cells. Moreover, treatment with specific AP-1 inhibitor T-5224 improved DS-associated phenotypes in DSACs. CONCLUSIONS: This study demonstrates that MX1-mediated AP-1 activation is partially responsible for cellular dysfunction of DS. T-5224 effectively ameliorated DS-associated phenotypes in DSACs, suggesting it as a potential treatment option for DS patients.


Asunto(s)
Síndrome de Down , Factor de Transcripción AP-1 , Humanos , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina , RNA-Seq , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/genética , Cromatina , Proteínas de Resistencia a Mixovirus/genética , Proteínas de Resistencia a Mixovirus/metabolismo
3.
Acta Biomater ; 170: 567-579, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37683968

RESUMEN

Adipose tissue is an endocrine organ. It serves many important functions, such as energy storage, hormones secretion, and providing insulation, cushioning and aesthetics to the body etc. Adipose tissue engineering offers a promising treatment for soft tissue defects. Early adipose tissue production and long-term survival are closely associated with angiogenesis. Decellularized matrix has a natural ECM (extracellular matrix) component, good biocompatibility, and low immunogenicity. Therefore, in this study, the injectable composite hydrogels were developed to construct vascularized tissue-engineered adipose by using the pro-angiogenic effects of aortic adventitia extravascular matrix (Adv) or small intestinal submucosa (SIS), and the pro-adipogenic effects of decellularized adipose tissue (DAT). The composite hydrogels were cross-linked by genipin. The adipogenic and angiogenic abilities of composite hydrogels were investigated in vitro, and in a rat dorsal subcutaneous implant model. The results showed that DAT and SIS or Adv 1:1 composite hydrogel promoted the migration and tube formation of endothelial cells. Furthermore, DAT and SIS or Adv 1:1 composite hydrogel enhanced adipogenic differentiation of adipose-derived mesenchymal stem cells (ASCs) through activation of PPARγ and C/EBPα. The in vivo studies further demonstrated that DAT with SIS or Adv in a 1:1 ratio also significantly promoted adipogenesis and angiogenesis. In addition, DAT with SIS or Adv in a 1:1 ratio hydrogel recruited macrophage population with enhanced M2-type macrophage polarization, suggesting a positive effect of inflammatory response on angiogenesis. In conclusion, these data suggest that the composite hydrogels of DAT with SIS or Adv in 1:1 ratio have apparent pro-adiogenic and angiogenic abilities, thus providing a promising cell-free tissue engineering biomaterial with broad clinical applications. STATEMENT OF SIGNIFICANCE: Decellularized adipose tissue (DAT) has emerged as an important biomaterial in adipose tissue regeneration. Early adipose tissue production and long-term survival is tightly related to the angiogenesis. The revascularization of the DAT is a key issue that needs to be solved in adipose regeneration. In this study, the injectable composite hydrogels were developed by using DAT with Adv (aortic adventitia extravascular matrix) or SIS (small intestinal submucosa) in different ratio. We demonstrated that the combination of DAT with SIS or Adv in 1:1 ratio effectively improved the proliferation of adipose stem cells and endothelial cells, and promoted greater adipose regeneration and tissue vascularization as compared to the DAT scaffold. This study provides the potential biomaterial for clinical soft tissue regeneration.

5.
Chronic Dis Transl Med ; 8(3): 207-217, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36161199

RESUMEN

Background: Schizophrenia (SCZ) is a complex psychiatric disorder associated with widespread alterations in the subcortical brain structure. Hemispheric asymmetries are a fundamental organizational principle of the human brain and relate to human psychological and behavioral characteristics. We aimed to explore the state of thalamic lateralization of SCZ. Methods: We used voxel-based morphometry (VBM) analysis, whole-brain analysis of low-frequency fluctuations (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), and resting-state seed-based functional connectivity (FC) analysis to investigate brain structural and functional deficits in SCZ. Also, we applied Pearson's correlation analysis to validate the correlation between Positive and Negative Symptom Scale (PANSS) scores and them. Results: Compared with healthy controls, SCZ showed increased gray matter volume (GMV) of the left thalamus (t = 2.214, p = 0.029), which positively correlated with general psychosis (r = 0.423, p = 0.010). SCZ also showed increased ALFF in the putamen, the caudate nucleus, the thalamus, fALFF in the nucleus accumbens (NAc), and the caudate nucleus, and decreased fALFF in the precuneus. The left thalamus showed significantly weaker resting-state FC with the amygdala and insula in SCZ. PANSS negative symptom scores were negatively correlated with the resting-state FC between the thalamus and the insula (r = -0.414, p = 0.025). Conclusions: Collectively, these results suggest the possibility of aberrant laterality in the left thalamus and its FC with other related brain regions involved in the limbic system.

6.
Cell Death Differ ; 29(10): 1928-1940, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35306537

RESUMEN

Cardiomyopathy is a primary cause of mortality in Duchenne muscular dystrophy (DMD) patients. Mechanistic understanding of cardiac fibrosis holds the key to effective DMD cardiomyopathy treatments. Here we demonstrate that upregulation of Wilms' tumor 1 (Wt1) gene in epicardial cells increased cardiac fibrosis and impaired cardiac function in 8-month old mdx mice lacking the RNA component of telomerase (mdx/mTR-/-). Levels of phosphorylated IƙBα and p65 significantly rose in mdx/mTR-/- dystrophic hearts and Wt1 expression declined in the epicardium of mdx/mTR-/- mice when nuclear factor κB (NF-κB) and inflammation were inhibited by metformin. This demonstrates that Wt1 expression in epicardial cells is dependent on inflammation-triggered NF-κB activation. Metformin effectively prevented cardiac fibrosis and improved cardiac function in mdx/mTR-/- mice. Our study demonstrates that upregulation of Wt1 in epicardial cells contributes to fibrosis in dystrophic hearts and metformin-mediated inhibition of NF-κB can ameliorate the pathology, and thus showing clinical potential for dystrophic cardiomyopathy. Translational Perspective: Cardiomyopathy is a major cause of mortality in Duchenne muscular dystrophy (DMD) patients. Promising exon-skipping treatments are moving to the clinic, but getting sufficient dystrophin expression in the heart has proven challenging. The present study shows that Wilms' Tumor 1 (Wt1) upregulation in epicardial cells is primarily responsible for cardiac fibrosis and dysfunction of dystrophic mice and likely of DMD patients. Metformin effectively prevents cardiac fibrosis and improves cardiac function in dystrophic mice, thus representing a treatment option for DMD patients on top of existing therapies.


Asunto(s)
Cardiomiopatías , Metformina , Distrofia Muscular de Duchenne , Telomerasa , Proteínas WT1/metabolismo , Animales , Cardiomiopatías/etiología , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Distrofina/genética , Fibrosis , Inflamación/complicaciones , Ratones , Ratones Endogámicos mdx , FN-kappa B/metabolismo , ARN , Telomerasa/metabolismo , Regulación hacia Arriba , Proteínas WT1/genética , Proteínas WT1/uso terapéutico
7.
Biotechnol Lett ; 44(1): 129-142, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34738222

RESUMEN

Spinal cord injury (SCI) is catastrophic to humans and society. However, there is currently no effective treatment for SCI. Autophagy is known to serve critical roles in both the physiological and pathological processes of the body, but its facilitatory and/or deleterious effects in SCI are yet to be completely elucidated. This study aimed to use primary Schwann cell-derived exosomes (SCDEs) to treat rats after SCI. In the present study, SCDEs were purified and their efficacy in ameliorating the components of SCI was examined. Using both in vivo and in vitro experiments, it was demonstrated that SCDEs increased autophagy and decreased apoptosis after SCI, which promoted axonal protection and the recovery of motor function. Furthermore, it was discovered that an increased number of SCDEs resulted in a decreased expression level of EGFR, which subsequently inhibited the Akt/mTOR signaling pathway, which upregulated the level of autophagy to ultimately induce microtubule acetylation and polymerization. Collectively, the present study identified that SCDEs could induce axonal protection after SCI by increasing autophagy and decreasing apoptosis, and it was suggested that this may involve the EGFR/Akt/mTOR signaling pathway.


Asunto(s)
Exosomas , Traumatismos de la Médula Espinal , Animales , Apoptosis , Autofagia , Exosomas/metabolismo , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Células de Schwann/metabolismo , Médula Espinal , Traumatismos de la Médula Espinal/metabolismo
8.
Dev Neurosci ; 44(2): 113-120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34965526

RESUMEN

Microcephaly with or without chorioretinopathy, lymphedema, or mental retardation (MCLMR) is an inherited disorder characterized by severe microcephaly and abnormal facial features. Kinesin family member 11 (KIF11) mutations have been reported closely related to microcephaly in different cases, while the pathogenicity was still unclear. Here, we report a de novo heterozygous mutation in exon 20 of the KIF11 (c.2922G>T; p.Pro974=) from a microcephaly patient through whole-exome sequencing. Further studies identified that this variant affected the normal splicing of KIF11 pre-mRNA, thus leading to the c.2815_2922 deletion of exon 20 through PBMC-derived pre-mRNA splicing assay and minigene experiment. Moreover, c.2815_2922 deletion would produce a shortened KIF11 protein, which may competitively bind to the normal KIF11 protein, suggesting a dominant negative effect mechanism in c.2922G>T mutation-induced MCLMR.


Asunto(s)
Microcefalia , Displasia Retiniana , Humanos , Cinesinas/genética , Leucocitos Mononucleares , Microcefalia/genética , Linaje , Empalme del ARN/genética , Displasia Retiniana/genética
9.
Front Cardiovasc Med ; 8: 744353, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35141286

RESUMEN

Cardiosphere-derived cells (CDCs) constitute a cardiac stem cell pool, a promising therapeutics in treating myocardial infarction (MI). However, the cell source of CDCs remains unclear. In this study, we isolated CDCs directly from adult mouse heart epicardium named primary epicardium-derived CDCs (pECDCs), which showed a different expression profile compared with primary epicardial cells (pEpiCs). Interestingly, pECDCs highly expressed T-box transcription factor 18 (Tbx18) and showed multipotent differentiation ability in vitro. Human telomerase reverse transcriptase (hTERT) transduction could inhibit aging-induced pECDCs apoptosis and differentiation, thus keeping a better proliferation capacity. Furthermore, immortalized epicardium CDCs (iECDCs) transplantation extensively promote cardiogenesis in the infracted mouse heart. This study demonstrated epicardium-derived CDCs that may derive from Tbx18+ EpiCs, which possess the therapeutic potential to be applied to cardiac repair and regeneration and suggest a new kind of CDCs with identified origination that may be followed in the developing and injured heart.

10.
Front Genet ; 12: 740415, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185999

RESUMEN

Objective: To report a rare case in which an IVF-ET twin pregnancy gave birth to a partial trisomy 21 chimera girl. Design: Case report. Setting: University hospital. Patient: A girl with partial trisomy 21 mosaicism after in vitro fertilization and embryo transfer. Interventions: In vitro fertilization (IVF) and embryo transfer (ET). Main Outcome Measure: Karyotype analysis, Copy Number Variation sequencing (CNV-seq), stLFR-WGS, and Short Tandem Repeat (STR) analysis. Results: Being assisted with IVF and EF technology, the couple successfully gave birth to twin sisters at 37 weeks of gestational age. The NonInvasive Prenatal Testing (NIPT) and Nuchal Translucency (NT) examination showed no detectable genetic abnormalities during pregnancy. However, the younger infant displayed growth retardation and feeding difficulties after birth, which was not observed in her twin sister. Further genetic counseling and diagnosis suggested that she is a Chimera with complex partial trisomy 21. The stLFR-WGS assay showed multiple CNV variations in Chr21 and STR analysis confirmed the paternal origin of the additional fragments. Conclusion: It is rare for IVF-ET-assisted twin pregnancy to give birth to a girl with a complex combination of abnormal Chr21, which might result from paternal chromosome rearrangement during meiosis and mitosis.

11.
Artículo en Inglés | MEDLINE | ID: mdl-31958509

RESUMEN

Excessive ammonia triggered negative effects on aquatic animals' health, growth, and mass death, especially at different developmental periods. However, the underlying responses to ammonia stress in fish larvae and juveniles were much less explored. Transcriptomic analysis of Coilia nasus larvae and juveniles treated with ammonia stress and subsequent recovery in freshwater were performed. Total 958,213,132 clean reads were obtained. A total of 234,830 unigenes with an average length of 1397 bp and N50 value 2521 bp were assembled. 831 and 952 DEGs were identified in C. nasus larvae and juveniles, respectively. Transcriptomic analysis revealed that genes associated with purine metabolism, immune, inflammation, epigenetic modification, and nerve conduction presented different expression trends between C. nasus larvae and juveniles. Other genes related to purine metabolism (XDH) and epigenetic modifications (DNMT1, DNMT3A, and DNMT3B) detected by RT-qPCR also displayed different expression trends. These results indicated that ammonia detoxify strategies and gene regulation patterns were different in C. nasus larvae and juveniles. Higher TNF-α, ILF-2, and ILF-3 expression and reduced LZM, AKP, and ACP activities suggested that inflammation and declined immunity were triggered by ammonia stress. Additionally, nervous conduction was severely affected under ammonia stress in C. nasus juveniles. Furthermore, recovery in freshwater had positive effects on nervous conduction. However, it was worth noting that reduced immunity and inflammation were still existed after recovery in freshwater. In conclusion, our study would be beneficial to reveal the different responses to ammonia stress between larvae and juveniles.


Asunto(s)
Amoníaco/toxicidad , Proteínas de Peces/metabolismo , Peces/metabolismo , Larva/metabolismo , Estrés Fisiológico/fisiología , Animales , Agua Dulce , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Transcriptoma
12.
Oxid Med Cell Longev ; 2019: 4569614, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31949878

RESUMEN

Sleep deprivation is reported to cause oxidative stress and is hypothesized to induce subsequent aging-related diseases including chronic inflammation, Alzheimer's disease, and cardiovascular disease. However, how sleep deprivation contributes to the pathogenesis of sleep deficiency disorder remains incompletely defined. Accordingly, more effective treatment methods for sleep deficiency disorder are needed. Thus, to better understand the detailed mechanism of sleep deficiency disorder, a sleep deprivation mouse model was established by the multiple platform method in our study. The accumulation of free radicals and senescence-associated secretory phenotype (SASP) was observed in the sleep-deprived mice. Moreover, our mouse and human population-based study both demonstrated that telomere shortening and the formation of telomere-specific DNA damage are dramatically increased in individuals suffering from sleeplessness. To our surprise, the secretion of senescence-associated cytokines and telomere damage are greatly improved by folic acid supplementation in mice. Individuals with high serum baseline folic acid levels have increased resistance to telomere shortening, which is induced by insomnia. Thus, we conclude that folic acid supplementation could be used to effectively counteract sleep deprivation-induced telomere dysfunction and the associated aging phenotype, which may potentially improve the prognosis of sleeplessness disorder patients.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Daño del ADN , Suplementos Dietéticos , Ácido Fólico/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Privación de Sueño/tratamiento farmacológico , Telómero/efectos de los fármacos , Adulto , Anciano , Anciano de 80 o más Años , Animales , Citocinas , Femenino , Humanos , Inflamación/tratamiento farmacológico , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fenotipo , Privación de Sueño/fisiopatología , Telómero/genética
14.
Cell Discov ; 4: 23, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29796307

RESUMEN

Common marmoset (Callithrix jacchus) is emerging as a clinically relevant nonhuman primate model for various diseases, but is hindered by the availability of marmoset cell lines, which are critical for understanding the disease pathogenesis and drug/toxicological screening prior to animal testing. Here we describe the generation of immortalized marmoset hepatic progenitor cells (MHPCs) by lentivirus-mediated transfer of the simian virus 40 large T antigen gene in fetal liver polygonal cells. MHPCs proliferate indefinitely in vitro without chromosomal alteration and telomere shortening. These cells possess hepatic progenitor cell-specific gene expression profiles with potential to differentiate into both hepatocytic and cholangiocytic lineages in vitro and in vivo and also can be genetically modified. Importantly, injected MHPCs repopulated the injured liver of fumarylacetoacetate hydrolase (Fah)-deficient mice with hepatocyte-like cells. MHPCs also engraft as cholangiocytes into bile ducts of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced bile ductular injured mice. MHPCs provide a tool to enable efficient derivation and genetic modification of both hepatocytes and cholangiocytes for use in disease modeling, tissue engineering, and drug screening.

15.
Oncotarget ; 8(13): 21818-21833, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28423527

RESUMEN

Glaucoma is the leading cause of irreversible blindness. The most prevalent form of glaucoma is primary open-angle glaucoma (POAG). Oxidative stress is one of the major pathogenic factors of the POAG, and can elicit molecular and functional changes in trabecular meshwork cells, causing increased aqueous humor outflow resistance and elevated intraocular pressure. However, the regulatory mechanisms underlying oxidative stress-induced cell phenotypic changes remain elusive. Herein, we exposed primary human trabecular meshwork cells to the oxidative stress induced by 300 µM H2O2 for 2 h, and found significantly up-regulated expression of extracellular matrix proteins and a transcription factor, hairy and enhancer of split-1 (HES1). The cell functions, including migration and proliferation, were impaired by the oxidative stress. Furthermore, HES1 shRNA abrogated the extracellular matrix protein up-regulation and rescued the functional defects caused by the oxidative stress; conversely, HES1 overexpression resulted in the molecular and functional changes similar to those induced by H2O2. These results suggest that HES1 promotes extracellular matrix protein expression and inhibits proliferative and migratory functions in the trabecular meshwork cells under oxidative stress, thereby providing a novel pathogenic mechanism underlying and a potential therapeutic target to the POAG.


Asunto(s)
Movimiento Celular , Proliferación Celular , Matriz Extracelular/patología , Glaucoma de Ángulo Abierto/patología , Estrés Oxidativo/fisiología , Malla Trabecular/patología , Factor de Transcripción HES-1/metabolismo , Western Blotting , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Matriz Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Glaucoma de Ángulo Abierto/metabolismo , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Malla Trabecular/metabolismo
16.
Fish Physiol Biochem ; 43(2): 397-409, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27942900

RESUMEN

In order to assess the digestive physiological capacity of the American shad Alosa sapidissima and to establish feeding protocols that match larval nutritional requirements, we investigated the ontogenesis of digestive enzymes (trypsin, amylase, lipase, pepsin, alkaline phosphatase, and leucine aminopeptidase) in larvae, from hatching to 45 days after hatching (DAH). We found that all of the target enzymes were present at hatching, except pepsin, which indicated an initial ability to digest nutrients and precocious digestive system development. Trypsin rapidly increased to a maximum at 14 DAH. Amylase sharply increased until 10 DAH and exhibited a second increase at 33 DAH, which coincided with the introduction of microdiet at 30 DAH, thereby suggesting that the increase was associated with the microdiet carbohydrate content. Lipase increased until 14 DAH, decreased until 27 DAH, and then increased until 45 DAH. Pepsin was first detected at 27 DAH and then sharply increased until 45 DAH, which suggested the formation of a functional stomach. Both alkaline phosphatase and leucine aminopeptidase markedly increased until 18 DAH, which indicated intestinal maturation. According to our results, we conclude that American shad larvae possess the functional digestive system before mouth opening, and the significant increases in lipase, amylase, pepsin, and intestinal enzyme activities between 27 and 33 DAH suggest that larvae can be successfully weaned onto microdiets around this age.


Asunto(s)
Digestión/fisiología , Proteínas de Peces/metabolismo , Peces/embriología , Peces/metabolismo , Hidrolasas/metabolismo , Animales , Embrión no Mamífero
17.
PLoS One ; 11(1): e0148263, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26824903

RESUMEN

Mouse models are commonly used for studying hepatocellular carcinoma (HCC) biology and exploring new therapeutic interventions. Currently three main modalities of HCC mouse models have been extensively employed in pre-clinical studies including chemically induced, transgenic and transplantation models. Among them, transplantation models are preferred for evaluating in vivo drug efficacy in pre-clinical settings given the short latency, uniformity in size and close resemblance to tumors in patients. However methods used for establishing orthotopic HCC transplantation mouse models are diverse and fragmentized without a comprehensive comparison. Here, we systemically evaluate four different approaches commonly used to establish HCC mice in preclinical studies, including intravenous, intrasplenic, intrahepatic inoculation of tumor cells and intrahepatic tissue implantation. Four parameters--the latency period, take rates, pathological features and metastatic rates--were evaluated side-by-side. 100% take rates were achieved in liver with intrahepatic, intrasplenic inoculation of tumor cells and intrahepatic tissue implantation. In contrast, no tumor in liver was observed with intravenous injection of tumor cells. Intrahepatic tissue implantation resulted in the shortest latency with 0.5 cm (longitudinal diameter) tumors found in liver two weeks after implantation, compared to 0.1cm for intrahepatic inoculation of tumor cells. Approximately 0.1cm tumors were only visible at 4 weeks after intrasplenic inoculation. Uniform, focal and solitary tumors were formed with intrahepatic tissue implantation whereas multinodular, dispersed and non-uniform tumors produced with intrahepatic and intrasplenic inoculation of tumor cells. Notably, metastasis became visible in liver, peritoneum and mesenterium at 3 weeks post-implantation, and lung metastasis was visible after 7 weeks. T cell infiltration was evident in tumors, resembling the situation in HCC patients. Our study demonstrated that orthotopic HCC mouse models established via intrahepatic tissue implantation authentically reflect clinical manifestations in HCC patients pathologically and immunologically, suggesting intrahepatic tissue implantation is a preferable approach for establishing orthotopic HCC mouse models.


Asunto(s)
Carcinoma Hepatocelular/secundario , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/secundario , Neoplasias Peritoneales/secundario , Células Tumorales Cultivadas/trasplante , Animales , Modelos Animales de Enfermedad , Histocitoquímica , Humanos , Inyecciones Intravenosas , Hígado/patología , Pulmón/patología , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Trasplante de Neoplasias/métodos , Peritoneo/patología , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...